Nodal signaling and the zebrafish organizer.

نویسندگان

  • A F Schier
  • W S Talbot
چکیده

Systematic genetic screens in zebrafish have led to the discovery of mutations that affect organizer function and development. The molecular isolation and phenotypic analysis of the affected genes have revealed that TGF-beta signals of the Nodal family play a key role in organizer formation. The activity of the Nodal signals Cyclops and Squint is regulated extracellularly by the EGF-CFC cofactor One-eyed Pinhead and by antagonists belonging to the Lefty family of TGF-beta molecules. In the absence of Nodal signaling, the fate of cells in the organizer is transformed from dorsal mesoderm to neural ectoderm. Differential Nodal signaling also patterns the organizer along the anterior-posterior axis, with high levels required for anterior cell fates and lower levels for posterior fates. In addition, Nodal signaling cooperates with the homeodomain transcription factor Bozozok in organizer formation and neural patterning. The combination of genetic, molecular and embryological approaches in zebrafish has thus provided a framework to understand the mechanisms underlying organizer development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of Nodal signaling required for organizer formation

BACKGROUND Signaling molecules related to the Nodal protein play essential roles in the formation and patterning of the gastrula organizer and the germ layers during vertebrate development. The forkhead transcription factor FoxH1 (also known as Fast1) is a component of the Nodal signaling pathway. Although different roles have been suggested for FoxH1, its specific function during development i...

متن کامل

Formation of the Embryonic Organizer Is Restricted by the Competitive Influences of Fgf Signaling and the SoxB1 Transcription Factors

The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation...

متن کامل

Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish

In vertebrates, specification of the dorso-ventral axis requires Wnt signaling, which leads to formation of the Nieuwkoop center and the Spemann organizer (dorsal organizer), through the nuclear accumulation of beta-catenin. Zebrafish bozozok/dharma (boz) and squint (sqt), which encode a homeodomain protein and a Nodal-related protein, respectively, are required for the formation of the dorsal ...

متن کامل

Nodal signaling patterns the organizer.

Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechorda...

متن کامل

Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two β-catenins in the zebrafish embryo

Using embryos transgenic for the TOP-GFP reporter, we show that the two zebrafish beta-catenins have different roles in the organizer and germ-ring regions of the embryo. beta-Catenin-activated transcription in the prospective organizer region specifically requires beta-catenin-2, whereas the ventrolateral domain of activated transcription is abolished only when both beta-catenins are inhibited...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2001